Electroplating is a general name for processes that create a metal coating on a solid substrate through the reduction of cations of that metal by means of a direct electric current. The part to be coated acts as the cathode (negative electrode) of an electrolytic cell; the electrolyte is a solution of a salt of the metal to be coated; and the anode (positive electrode) is usually either a block of that metal, or of some inert conductive material. The current is provided by an external power supply. Electroplating is widely used in industry and decorative arts to improve the surface qualities of objects—such as resistance to abrasion and corrosion, lubricate, reflectivity, electrical conductivity, or appearance. It may also be used to build up thickness on undersized or worn-out parts, or to manufacture metal plates with complex shape, a process called electroforming. It is also used to purify metals such as copper. Process of Electroplating The electrolyte should contain positive ions (cations) of the metal to be deposited. These cations are reduced at the cathode to the metal in the zero valence state. For example, the electrolyte for copper plating can be a solution of copper(II) sulphate, which dissociates into Cu2+ cations and SO2− 4 anions. At the cathode, the Cu2+ is reduced to metallic copper by gaining two electrons.

When the anode is made of the coating metal, the opposite reaction may occur there, turning it into dissolved cations. For example, copper would be oxidized at the anode to Cu2+ by losing two electrons. In this case, the rate at which the anode is dissolved will be equal to the rate at which the cathode is plated and thus the ions in the electrolyte bath are continuously replenished by the anode. The net result is the effective transfer of metal from the anode source to the cathode. The anode may instead be made of a material that resists electrochemical oxidation, such as lead or carbon. Oxygen, hydrogen peroxide, or some other byproducts are then produced
at the anode instead. In this case, ions of the metal to be plated must be periodically replenished in the bath as they are drawn out of the solution. The plating is most commonly a single metallic element, not an alloy. However, some alloys can be electrodeposited, notably brass and solder. Plated “alloys” are not true alloys, i.e. solid solutions, but rather discrete tiny crystals of the metals being plated. In the case of plated solder, it is sometimes deemed necessary to have a “true alloy”, and the plated solder is melted to allow the Tin and Lead to combine to form a true alloy. The true alloy is more corrosion resistant than the as-plated alloy. Many plating baths include cyanides of other metals (such as potassium cyanide) in addition to cyanides of the metal to be deposited. These free cyanides facilitate anode corrosion, help to maintain a constant metal ion level and contribute to conductivity. Additionally, non-metal chemicals such as carbonates and phosphates may be added to increase conductivity. When plating is not desired on certain areas of the substrate, stop-offs are applied to prevent the bath from coming in contact with the substrate. Typical stop-offs include tape, foil, lacquers, and waxes. The ability of a plating to cover uniformly is called throwing power; the better the throwing power the more uniform the coating. Power Supply in Electroplating Typically, dc power supplies provide a well-regulated current or voltage level that is preset and then the supply turned on and off as needed. This is the typical function of a power supply in an electronic device such as a computer or battery charger. However, in the electroplating industry, plating engineers refer to power supplies as rectifiers. Not only does the dc output wave need to be regulated, but in certain applications, the output waveform must be precisely controlled as well. In the semiconductor and circuit-board industry, a different type of power supply is used. Engineers in these fields use rectifiers with a pulse periodic reverse (PPR) output to copper-plate their products to obtain increased speed and performance. Applications of Electroplating  Increase wear resistance  Protect against surface abrasions  Reduce friction  Improve electrical conductivity (copper layer onto an electrical component)  Prepare surfaces for better adhesion before painting or re-coating.

Leave a Comment

Your email address will not be published. Required fields are marked *